ADVANTAGE AVIATION INC. MULTI ENGINE CHECKOUT

Aircraft Make & Model:	Name:	
Instructor:		
AIRSPEEDS Knots/Miles per hour (c		
V _s :	Short field approach:	
V _{SO} :	Go around:	
V _{MCA} :	Cruise climb:	
Rotate V _R :	V _{FE} :	
V _Y :	V _{NO} :	
V _{YSE} :	V _{LE} :	
V _{x:}	VLO:	
V _{XSE} :	V _{NE} :	
V _A :	Max crosswind:	
V _{App} :	Best glide:	
V _{App} (single engine):		
ENGINE		
Manufacturer:	Model:	
Horsepower:		
<u>OIL</u>		
Absolute minimum:	Minimum for operation:	
Maximum:	Grade:	
FUEL		
Grade:	Color:	
Max Capacity (total):	Max total cap. at tabs:	
Max Capacity (usable):	Max usable cap. at tabs:	
WEIGHT AND BALANCE		
Max ramp weight:	Max takeoff weight:	
Max landing weight:	BEW:	
Useful load:	Max payload w/full fuel:	
<u>WEIGHT</u>	ARM MOMENT	
BEW		
Front seats		
Rear seats		
Baggage		
Fuel		
TOTAL		
CG in/out: Corr	rection:	
CG position after 3hrs flight:		

MISC

- During run-up, one of the magnetos on one engine is running rough. What is happening and what will you do about it?
- 2. When should the mixture be leaned?
- 3. Explain how you lean the mixture:
- How do you detect carburetor/induction ice?
- 5. What can you do about it?
- 6. When should you use carburetor heat?_____

MALFUNCTIONS

1. You are on the takeoff roll, the airplane swerves to the right. What should you do and why?_

- 2. You are at 100' on the upwind at Palo Alto, one engine quits. What are you going to do?____
- 3. You are cruising along at 7500', the left engine runs rough and quits. What are you going to do?

ELECTRICAL SYSTEM

- 1. Describe the electrical system on this airplane:
- If the low voltage warning light illuminates, what might have happened?
- 3. What can be done about it during flight?_____
- What happens to the electrical system when one engine fails?
- 5. Describe your actions in the event of an electrical fire:

PROPELLER SYSTEM

1. When RPM is increased by the pilot, explain what happens to the propeller and how this occurs:

- 2. Describe how the propeller goes into the feather position:
- 3. What is the function of accumulators?
- 4. Is this airplane equipped with accumulators?
- 5. Can the propellers be feathered on the ground? Explain why/why not:
- 6. What happens when the RPM is decreased?
- 7. You initiate a climb, do you increase RPM first then manifold? Explain:
- 8. What causes propeller over-speed and what should you do if this should occur?

GEAR SYSTEM

1. What type of gear system is this airplane equipped with?

- 2. Explain the gear system:
- 3. While taxiing, you bring the gear lever to the up position. What might happen?

- 4. What are the unsafe gear indications?
- 5. What is the emergency gear extension procedure?

ENGINES

- 1. What is the definition of a critical engine?_____
- 2. What is the critical engine on this airplane? _____
- 3. What is the recommended use of cowl flaps?

PERFORMANCE

Service ceiling of this aircraft:

- TAKE-OFF DISTANCE: (max gross weight)
 - Max gross weight, sea level, standard temperature, 10 kts headwind: Takeoff roll: 50' obstacle:

Max gross weight, 6000' pressure altitude, 28°C, 5 kts headwind:

- CLIMB PERFORMANCE: (no wind) Max gross weight, sea level, standard temperature: Max gross weight, 7000' pressure altitude, 25°C:______
- CRUISE: (7000', 15°C, 65% power, full fuel)
 Max flight duration with 45 minutes reserve:
 How many gallons of fuel used:
- LANDING DISTANCE: (no wind) Max gross weight, sea level, standard temperature, 10 kts headwind: Max gross weight, 6000' pressure altitude, 28°C:

50' obstacle:	Lanung ron.	
	50' obstacle:	